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- Context
MATERIALS SUBJECTED TO SPACE HAZARDS

Thermal: -180° to 160° ESA plan to send explorer satellite
Charging: eV to >100keV to study Jupiter moons in 2022
Ultraviolet: equivalent sun hour

Atomic oxygen: atom/cm? (JUICE project, 350 Millions €)
Particle radiation: 200 Mrad
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SURFACE CHARGING EFFECT ON SATELLITE ARRAYS

Insulation:
crosslinked
ETFE
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SUNLIGHT POSITION:
Positive charging of solar panels
(photoelectric current)

SHADOW POSITION:

Negative charging of the wire connected
to the solar panel (plasma current)




- Context

SURFACE CHARGING EFFECT ON SATELLITE ARRAYS

Surface arcing effect or electrostatic discharges
- damage of satellite arrays / onboard electronics
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PROJECT OBJECTIVES

Antistatic
ETFE

Modification of ETFE formulation by adding conductive

nanoparticles (carbon nanotube, carbon black...) to
decrease bulk resistivity - dissipation of surface charging
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TECHNICAL CHALLENGES

Electrical resistivity (ohm.cm)
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(1) Developing formulations with

in the antistatic domain or with a
soft percolation threshold

(2) Retaining antistatic properties
during the scale-up from lab
materials to wire prototyping

(3) Space durability ?

content (wt%o)
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- Context

LISTED

Micro-extruder (10g/batch), mini-extruder 1 kg/h...

LUXEMBOURG

INSTITUTE OF SCIENCE
AND TECHNOLOGY

Characterization:

SEM, AFM, uCT, DSC, DMA, TGA,
NMR, FTIR, NMR, nanoSIMS,
SAXS/WAXS, tensile testing....

8 Hautcharage site



- Material dev.

Comparison between CB and CNT on the on ETFE nanocomposite resistivity
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CB provides a softer percolation threshold compared to CNT

- ETFE/opti-CB 100/5.125 selected




- Material dev.

Effect of the CNT treatment and addition of non-conductive particles
on ETFE nanocomposite resistivity
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Percolation threshold can be tailored with oxidation of CNT and adding TiO,

- ETFE/alt-opti-CNT 100/2 selected




- Material dev.

Effect of mixing ETFE with a chemically modified ETFE (m-ETFE)
on ETFE nanocomposite resistivity
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Percolation threshold can be tailored by mixing ETFE with a chemically

modified ETFE -2 ETFE/m-ETFE/opti-CNT (50/50/1.875) selected



- Material dev.
In-depth characterization of the selected formulations

Formulations

ETFE/alt-opti-CNT

(100/2) X

ETFE/alt-opti-CNT
(100/2.5)

Electrical | Electrical Electrical | Electrical Agglomerate | Nanoparticle | Thermal Tensile Thermogravi
resistivity [ resistivity resistivity | resistivity size dispersion expansion testing metric testing
in the repeatability | stability after
antistatic from -20°{ annealing
range to 70°c
Not tested Not tested| Not tested Not tested Not tested Not tested Not tested Not tested
Not tested Not tested| Not tested Not tested Local Not tested Not tested Not tested
agglomerates
with single
particle
dispersion

m-ETFE/ETFE/opti-CN
(50/50/1.875)

Elongation <
50% / ETFE

Effective fraction
of opti-CNT: 4.5%

ETFE/opti-CB
00/5.125) X

Not tested

Not tested Not tested] Not tested Not tested Not tested Not tested

ETFE/opti-CB

(100/5.5) \/

DECREASED
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Not tested




- Material dev.

Some typical characterization results: ETFE/opti-CB (100/5.5)

Resistivity (ohm.cm)

Effect of temperature on the electrical resistivity of
ETFE/opti-CB (100/5.5)
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- Stable from -20° to 70° C
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counts

.

1 Are
Count: 51
Mean: 289,693
StilDey: 447,849
Bins: 10

100 pm

Optical microscopy

a (um?) 4000
Min: 1. 488

Max: 1883.555

Mode: 1 (36)

Bin Width: 399.900

-> calculation of average aggregate size
as an indicator of dispersion, here 300 pm?
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Some typical characterization results: ETFE/opti-CB (100/5.5)

TR e T
s, 3 P AW

Transmission electron microscopy
=> no single particle, organization into aggregates
of diameter comprised between 100 nm and 200 nm




- Prototype dev.

Scale-up at AXON requires masterbatches that will be
diluted at different concentrations

3 x 10 kg of masterbatch:
ETFE/opti-CB, c-ETFE/opti-CB, and m-ETFE/-ETFE/opti-CNT
processed at LIST
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- Prototype dev.
AXON compounding stage (dilution), case ETFE/CB
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Percolation curve determined for the disks, important effect of processing methods

(conditions), but compounded strands non conductive




- Prototype dev.
AXON compounding stage (dilution), case c-ETFE/CB
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Percolation curve determined for the disks, important effect of processing methods

(conditions), but compounded strands non conductive




- Prototype dev.

AXON compounding stage (dilution), case m-ETFE/ETFE/opti-CB

m-ETFE/ETFE/opti-CNT impossible to dilute during the compounding stage
-> formulation too viscous, abandoned
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- Prototype dev.

AXON wire manufacturing

Diameter
Gauge

Spark Windup

Tester
Capstan Extruder Eccentricity
Gauge
Silver-plated copper
or alloy conductor \
T\ Extruded, radiation modified
fluoropolymer insulation
Variant | Shielded Un- No.of | 180 Stranding Conductor Characteristics Shield Core Finished Wire or |
No. Shielded | Cores | 2835 Nao. of Strands Strand Max @ | Cable Charactaristics | ﬂ I [' I| | J II | | ‘ l‘ I ||| | | | | | | | | | || | || I |'| -'I 11} || \ III |I |, '|'|
wire | xDiameter | Max Nom | Max Ohmic | @ (mm) | (mm) | Max® | Max [ [' || | || R "'" 11t
Cods {rmm) {rm) Section | Resistance {mm) Weight |
(mm®) (Qfkm) (kkm) |
01 X 1 Te0.1 (1} 0.3 0.06 385.1 - - 064 0.08
02 X 1 - T=x0.12 (1) 0.38 0.08 244 - - o7 1.35
03 X 1 oot 19=0.1 (1) 053 015 149 - - 086 211
04 X 1 o2 19%0.12 (1) 0.66 0.26 106.2 = = 0.99 2.97

ESCC3901/012 Type ETFE-based wire variant table extract- variant 4




- Prototype dev.

AXON extrusion stage (wire production), case c-ETFE/CB
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Loss of electrical conductivity in the case of the extruded wire insulator,

conductivity recovered when the insulator is transformed into compression-molded disks




- Prototype dev.

AXON extrusion stage (wire production), case ETFE/CB
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Loss of electrical conductivity in the case of the extruded wire insulator,

conductivity recovered when the insulator is transformed into compression-molded disks




-> Prototype dev.

Loss of conductivity in the case ETFE/CB wire insulator? Particles distribution?

Optical mic.

Homogeneous
aggregate
distribution




- Prototype dev.

Loss of conductivity in the case of ETFE/CB wire insulator? Wire design?

Effect of extrusion

600 18w9/10.1/etfe-cb/m1 (extruded wire)

2
(110) reflection “"".
Py

Scattering Intensity (Arb. Units)

16 17 18 15 20 21 22
2theta (%)

Orientation of the polymer chain
possibly deconnecting

conduction paths

Effect of wire insulator thickness

Case

Electrical

resistivity
(ohm.cm)

ETFE/opti-CB 90/10
(insulator thickness 0.475 mm)

Wire with insulator made of 4 99E+16
ETFE/opti-CB 90/10

(insulator thickness 0.2 mm)

Wire with insulator made of 7.05E+15

Possible existence of

a critical thickness
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- Conclusions

Percolation threshold of ETFE nanocomposite
can be tailored at the lab scale

- Oxidizing conductive particles

- Mixing conductive with non conductive particles
- Chemically modifying the matrix

But the electrical properties are not retained
during the wire insulator extrusion

- process-induced chain orientation induced a
potential disconnection between electrical paths

- Possible existence of a coating critical thickness

New wire design with shaping reflecting the compression-molding process

Space durability of the nanocomposites unknown
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